Poincaré's h-Cobordism and the price of fish

T. I. Strainer B.J.M. Wilkins

May 6, 2009

Contents

1 Drivle's Theorem and the R-O Lemma 1 2 Gackworth's Lemma in Ω -topologies 2

Introduction

This paper discusses a new extension of Drivle's Theorem, stated in Theorem $\underline{\underline{1}}$. For earlier work, see $\underline{\underline{[1,\ 2]}}$.

1 Drivle's Theorem and the R-O Lemma

In this Section we will state and prove our main result. The fundamental equation of wet fish-pricing is that of Whackabath [2]:

$$f_{xxx} + 3f_{xx} - 2 \cdot \operatorname{Ker}(f) = 0. \tag{1}$$

We will prove the following:

Theorem 1 Whackabath's equation $\underline{\underline{(1)}}$ is hardly ever used.

.

2 Gackworth's Lemma in Ω -topologies

It is an interesting question whether our Theorem $\underline{\underline{1}}$ for Whackabath's equation $\underline{\underline{(1)}}$ (defined in Section $\underline{\underline{1}}$ on page $\underline{\underline{1}}$) in standard topology can be applied without change in Gackworth's Ω -topologies. A very full discussion of Gackworth's work was given in $\underline{\underline{1}}$.

.

References

- [1] B. J. M. Wilkins, "Topological Dynamics and the Haddock Fishery", Unpublished, 1987.
- [2] T. I. Strainer & B. J. M. Wilkins 1993, A new result on Drivle's Theorem, Proc. Iceland Cod Fish Soc. Lond. Ser. D, 134 (8678–8679).