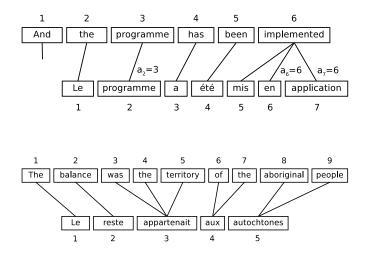
SyMGiza++: A Tool for Parallel Computation of Symmetrized Word Alignment Models

Marcin Junczys-Dowmunt and Arkadiusz Szał

Information Systems Laboratory, Adam Mickiewicz University, Poznań, Poland


Oct. 19, 2010

Marcin Junczys-Dowmunt, Arkadiusz Szał SyMGiza++: Symmetrized Word Alignment Models

Sar

Introduction

Directed word alignment models

Marcin Junczys-Dowmunt, Arkadiusz Szał

SyMGiza++: Symmetrized Word Alignment Models

イロト イヨト イヨト イヨト

Ξ

- Giza++ implements maximum likelihood estimators for several statistical alignment models (IBM Model 1 through 5, HMM alignment model, Model 6).
- The EM algorithm is used for the estimation of model parameters. It consists of two steps iterativly repeated steps:
 - E-step a previously computed model is applied to the data. The expected counts for specific parameters are collected.
 - M-step the expected counts are taken as fact and used to estimate the probabilities of the next model.

・ロト ・回ト ・ヨト ・ヨト

- Giza++ implements maximum likelihood estimators for several statistical alignment models (IBM Model 1 through 5, HMM alignment model, Model 6).
- The EM algorithm is used for the estimation of model parameters. It consists of two steps iterativly repeated steps:
 - E-step a previously computed model is applied to the data. The expected counts for specific parameters are collected.
 - M-step the expected counts are taken as fact and used to estimate the probabilities of the next model.

Sar

Example modification of IBM Model 1 (I)

Two **directed** alignment models — Pr_{α} and Pr_{β} — are trained **in** parallel.

$$Pr_{\alpha}(\mathbf{f}|\mathbf{e}) = \frac{\epsilon(m|l)}{(l+1)^m} \sum_{\mathbf{a}} \prod_{j=1}^m t_{\alpha}(f_j|e_{a_j})$$

The **translation probabilities** t_{α} — free parameters of model Pr_{α} — are estimated as:

$$t_{\alpha}(f|e) = \frac{\sum_{s=1}^{S} c(f|e; \mathbf{f}^{(s)}, \mathbf{e}^{(s)})}{\sum_{f'} \sum_{s=1}^{S} c(f'|e; \mathbf{f}^{(s)}, \mathbf{e}^{(s)})},$$

$$c(f|e; \mathbf{f}, \mathbf{e}) = \sum_{\mathbf{a}} Pr_{\alpha}(\mathbf{a}|\mathbf{f}, \mathbf{e}) \sum_{i,j} \delta(f, f_{j}) \delta(e, e_{i}),$$

$$Pr_{\alpha}(\mathbf{a}|\mathbf{f}, \mathbf{e}) = \frac{\prod_{j=1}^{m} \tilde{t}_{\alpha}(f_{j}|e_{a_{j}})}{\sum_{\mathbf{a}} \prod_{j=1}^{m} \tilde{t}_{\alpha}(f_{j}|e_{a_{j}})},$$

where $ilde{t}_lpha$ are translation probabilities from the **previous iteration**.

Marcin Junczys-Dowmunt, Arkadiusz Szał SyMGiza++: Symmetrized Word Alignment Models

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ - 日 ・

na a

Example modification of IBM Model 1 (I)

Two **directed** alignment models — Pr_{α} and Pr_{β} — are trained **in** parallel.

$$Pr_{\alpha}(\mathbf{f}|\mathbf{e}) = \frac{\epsilon(m|l)}{(l+1)^m} \sum_{\mathbf{a}} \prod_{j=1}^m t_{\alpha}(f_j|e_{a_j})$$

The **translation probabilities** t_{α} — free parameters of model Pr_{α} — are estimated as:

$$t_{\alpha}(f|e) = \frac{\sum_{s=1}^{S} c(f|e; \mathbf{f}^{(s)}, \mathbf{e}^{(s)})}{\sum_{f'} \sum_{s=1}^{S} c(f'|e; \mathbf{f}^{(s)}, \mathbf{e}^{(s)})},$$

$$c(f|e; \mathbf{f}, \mathbf{e}) = \sum_{\mathbf{a}} Pr_{\alpha}(\mathbf{a}|\mathbf{f}, \mathbf{e}) \sum_{i,j} \delta(f, f_{j})\delta(e, e_{i}),$$

$$Pr_{\alpha}(\mathbf{a}|\mathbf{f}, \mathbf{e}) = \frac{\prod_{j=1}^{m} \tilde{t}_{\alpha}(f_{j}|e_{a_{j}})}{\sum_{\mathbf{a}} \prod_{j=1}^{m} \tilde{t}_{\alpha}(f_{j}|e_{a_{j}})},$$

where \tilde{t}_{α} are translation probabilities from the **previous iteration**.

Alignment Method	Time [m]	Prec [%]	Rec [%]	AER [%]
GIZA++ EN-FR	_	91.19	92.20	8.39
GIZA++ FR-EN	-	91.82	87.96	9.79
GIZA++ REFINED	457	93.24	92.59	7.02
SYMGIZA++ EN-FR	_	94.22	93.88	5.92
SyMGiza++ fr-en	-	95.27	88.58	7.57
SYMGIZA++ REFINED	332	94.34	94.08	5.76

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank you very much!

Marcin Junczys-Dowmunt, Arkadiusz Szał SyMGiza++: Symmetrized Word Alignment Models

《口》 《圖》 《臣》 《臣》

Ξ