
A Genetic Programming Experiment
in Natural Language Grammar Engineering

Marcin Junczys-Dowmunt

Faculty of Mathematics and Computer Science
Adam Mickiewicz University

ul. Umultowska 87, 61-614 Poznań, Poland
junczys@amu.edu.pl

Abstract. This paper describes an experiment in grammar engineering for
a shallow syntactic parser using Genetic Programming and a treebank. The goal
of the experiment is to improve the Parseval score of a previously manually
created seed grammar. We illustrate the adaptation of the Genetic Programming
paradigm to the problem of grammar engineering. The used genetic operators are
described. The performance of the evolved grammar after 1,000 generations on
an unseen test set is improved by 2.7 points F-score (3.7 points on the training
set). Despite the large number of generations no overfitting effect is observed.

Keywords: Shallow parsing, genetic programming, natural language grammar
engineering, treebank.

1 Introduction

This paper describes an experiment in grammar engineering for a shallow syntactic
parser using Genetic Programming and a treebank. The goal of the experiment is
to improve the Parseval [1] score of a previously manually created seed grammar.
The shallow parser cannot be easily trained on a treebank using classical grammar
extraction methods like the creation of a probabilistic context-free grammar. Neither
does the parser support weights nor is the grammar formalism context-free. Parsing
rules are applied in the same order as they appear in the rule set, no search is carried
out during parsing. This requires a human grammar engineer to tune the grammar very
carefully.

The Genetic Programming [2,3] approach has been chosen because we regard it to
be similar to the grammar engineering process as it is performed by a human grammar
engineer, based on a trial-and-error search roughly guided by a treebank. We illustrate
the adaptation of the Genetic Programming paradigm to the problem of grammar
engineering by treating grammars as programs.

2 Related Work

Various flavors of genetic algorithms have been widely used for the induction of context
free grammars (e.g. [4,5]), but only few (e.g. [6,7]) focus on natural language grammars.

P. Sojka et al. (Eds.): TSD 2012, LNCS 7499, pp. 336–344, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

mailto:junczys@amu.edu.pl


A Genetic Programming Experiment in Grammar Engineering 337

These works use Genetic Programming or other genetic algorithms for the unsupervised
inference of context free grammars from unannotated corpora with rather unsatisfactory
results.

For the training on annotated data like treebanks, direct grammar extraction ap-
proaches are dominant. Probabilistic context free grammars can be read out from the
given tree structures, probabilities are based on frequency of the extracted structure oc-
curring in the treebank, see for instance [8] for experiments on the Penn Treebank or [9]
for results for the German TüBa D/Z treebank. We know of no work that uses treebanks
to automatically improve manually created grammars.

3 The Seed Grammar

3.1 The Shallow Parser

The shallow parser used in our experiments is a component of the PSI-toolkit [10]. It
is based on the Spejd [11] shallow parser and employs a similar rule formalism. It has
been used as a parser for French, Spanish, and Italian in the syntax-based statistical
machine translation application Bonsai [12] and in other applications.

The parsing process relies on a set of string matching rules constructed as regular
expressions over single characters, words, part-of-speech tags, lemmas, grammatical
categories etc. Apart from the matching portion of a rule, matching patterns for left and
right contexts of the main match can be defined. The parse tree construction process
is linear, matching rules are applied deterministically. The first match is chosen and
a spanning edge is added to the result. No actual search is performed during parsing.
The parsing process for a sentence is finished if during an iteration no rule can be
applied. The parser cannot make use of weights or other disambiguation methods.

3.2 Manual Grammar Engineering

For this kind of parser the use of a treebank is limited, for instance, it is not possible to
use a PCFG. Acceptable parsing quality is achieved by the careful manual construction
of the parsing grammar. The order of the rules in a grammar determines the order of
application to a sentence.

However, a treebank in combination with an evaluation metric like Parseval can
be used to guide the grammar engineer through a trial-and-error process. A human
grammar designer seeks to improve the grammar in such a way that the score is
improved. If the amount of work that needs to be invested into the grammar is not
reflected in further improvement, the construction can be regarded as finished.

Relying on The French Treebank [13], a basic French grammar has been created for
the PSI-toolkit shallow parser which is also used for French-Polish translation in the
mentioned Bonsai MT system. The manual work on that grammar was stopped at an
F-score level of 76.55% on the development set (76.20% on the test set). This grammar
serves as the starting point for the experiment.



338 M. Junczys-Dowmunt

4 Genetic Programming

Genetic programming (GP) [2,3] is a genetic algorithm flavor that evolves computer
programs. A population of programs is optimized according to a fitness function
that measures the performance of an individual on a training set. Programs that
perform better than others are allowed to produce off-springs which are added to the
next generation of computer programs. Repeating this process for a large number of
iterations is expected to result in a population of programs that perform reasonably well
at the task the fitness function was based on.

Rule

EmSequence Sequence EmSequence GroupAction

Phrase Token

Category
"AP"

Operator
"~"

Base
","

Star Union Star

Sequence

Token

Operator
"~"

Pos
"adv"

Sequence Sequence

Token

Operator
"~"

Pos
"adj"

Token

Operator
"~"

Pos
"card"

Sequence

Token

Operator
"~"

Pos
"adv"

ActionName
"group"

Category
"AP"

Number
"4"

Fig. 1. Chromosome tree representation of rule Example 1

4.1 Chromosome Representation

Genetic programming evolves computer programs, which are most commonly repre-
sented as tree structures. Child nodes contain arguments to the functions represented by
their respective parent nodes. Running a program is equivalent to a recursive evaluation
of the tree. In the terminology of genetic algorithms such a tree representation is called
a chromosome.

If the shallow parser is treated as a programming language interpreter, a grammar is
nothing else but an interpretable program. This assumption makes it straightforward to
apply GP directly to grammar engineering. The grammar only needs to be represented
as a tree structure that can be modified by genetic operators. The original grammar is
a text file consisting of rules similar to the following:

Rule "Example 1"
Left: [type=AP] [base~","];
Match: ([pos~"adv"])* ([pos~"adj"]|[pos~"card"]) ([pos~"adv"])*;
Eval: group(AP,4);



A Genetic Programming Experiment in Grammar Engineering 339

(a) Crossover (b) Mutation

Fig. 2. Variable-arity genetic operators

This rule creates an adjective phrase from an adjective or a cardinal number that can
be preceded or followed by any number of adverbs (including none). The rule is only
allowed to create the adjective phrase if its immediate left context is another adjective
phrase followed by a comma. Fig. 1 gives the tree representation of this rule. A full
grammar consists of many such trees, the roots of which are children of a single
RuleSet node. We differentiate between fixed-arity nodes (fixed number of children)
and variable-arity nodes (variable number of children) for which specialized genetic
operators are implemented.

4.2 Genetic Operators

The main genetic operators used in GP — and other genetic algorithms — are crossover
and mutation. In our case two variants exist for each operator depending on the arity
of the nodes involved. The genetic operators are type-aware and guaranteed to generate
a correct grammar.

Crossover. Crossover creates a new individual by combining genetic material of two
individuals from the previous generation that have been selected for reproduction. A
node of the first individual is randomly selected and based on its type a node of the
same type is randomly selected from the second individual.

Fixed-arity Crossover. Fixed-arity crossover simply replaces all child nodes (and
attached subtrees) of the first chosen node with the children of the second node.

Variable-arity Crossover. Variable-arity crossover is a variant of “cut-and-splice”
crossover. The number of children for both chosen nodes may vary, therefore two ran-
dom crossover points are chosen for each sequence of children. The new individual
contains all children of the first node left of the first crossover point and all children of
the second node right of the second crossover point. The example below is a possible



340 M. Junczys-Dowmunt

result of the crossover of rule Example 1 with another rule. Fig. 2a illustrates the
operation for fragments of both rules.

Rule "Example 1 variable-arity crossover"
Left: [type=AP] [base~","];
Match: ([pos~"adv"])* [base~"de"] [type=NP];
Eval: group(AP,4);

Mutation. Mutation forms a new individual from a single selected individual of the
previous generation.

Fixed-arity Mutation. Fixed-arity mutation replaces a randomly chosen child of a fixed-
arity node with a randomly generated tree. The root of this tree has to be of the same
type as the replaced node.

Variable-arity Mutation. Variable-arity mutation simply adds a randomly generated
branch to the list of children of the mutated variable-arity node. The rule below is the
result of the mutation of a node of rule Example 1 illustrated in Fig. 2b.

Rule "Example 1 - variable-arity mutation"
Left: [type=AP] [base~","];
Match: ([pos~"adv"])* ([pos~"adj"]

(([pos!~"posspron"]))+|[pos~"card"]) ([pos~"adv"])*;
Eval: group(AP,4);

4.3 Fitness Function

The measure how well an individual is doing compared to other individuals in its
generation is called fitness. The labeled version of the Parseval [1] metric is a natural
candidate for a fitness function in the case of grammar engineering. Therefore, the
Parseval F-score is chosen as the first component of our fitness function. Obviously,
the greater the F-score the fitter is the evaluated individual.

Bloat — a rapid increase in the size of evolved trees — is a common phenomenon
for genetic programming. Many strategies have been proposed to counteract the bloat
effect [3, p. 78]. We choose to use a multi-objective fitness function: apart from
optimizing F-score, tree complexity measured as the number of nodes is also optimized
by applying Ockham’s razor: if two individuals have the same F-score, the smaller tree
is considered fitter than its larger competitor.

4.4 Algorithm

Algorithm 1 contains the pseudo-code of the main evolution procedure. The parameter
seedGramar is the seed grammar the algorithm is supposed to improve. The first popu-
lation consists of populationSize copies of that grammar. We set populationSize
to 500 individuals per generation and limit the evolutionary process to 1,000 genera-
tions (maxGenerations). The parameters eliteFraction and selectFraction are



A Genetic Programming Experiment in Grammar Engineering 341

Algorithm 1. Main evolution procedure

Require: seedGrammar, trainingSet, populationSize, eliteFraction, selectFraction,
crossProb, mutateProb, maxGenerations, maxComplexity, order

seedScore← EVAL(seedGrammar, trainingSet)
seedNodes← COMPLEXITY(seedGrammar)
population← {

(seedGrammar, seedScore, seedNodes) | 1, 2, . . . , populationSize
}

for i← 1 to maxGenerations do
nextPopulation← BESTN(population, order, populationSize × eliteFraction)

selection← SELECT(population, order, populationSize × selectFraction)

for k← 1 to popsize do
offspring← GENOP(selection, crossProb, mutateProb)

offsprComplexity← COMPLEXITY(offspring)
if offsprComplexity > maxComplexity then

score← 0
else

score← EVAL(offspring, trainingSet)
end if
nextPopulation← nextPopulation ∪ {

(offspring, score, offsprComplexity)
}

end for
population← nextPopulation

end for
return BESTN(population, order, 1)

both set to 0.2. This means that the first 100 best individuals of a population are copied
unaltered to the next population and are the only ones allowed to reproduce. The total
number of nodes in a tree is limited by maxComplexity which is set to 25,000. The
two parameters crossProb and mutateProb determine the probabilities of the respec-
tive genetic operators. For our experiment, a mutation probability of 0.2 and a crossover
probability of 0.8 were chosen. The sort order in the population is determined by the pa-
rameter order which implements Ockham’s razor for the fitness function as described
in the previous section.

5 Evaluation

5.1 Training and Test Data

The French Treebank [13] comprises ca. 21,100 syntactically annotated sentences.
Originally, the first 15,000 sentences were set apart as a training set, but for this
experiment only the first 2,500 sentences are used in order to make calculations feasible.
For 1,000 iterations of the algorithm with 400 new individuals per iteration the training
set needs to be parsed 400,000 times. The performance of the best individual in each
generation is evaluated on the last 6,000 sentences of the treebank which have not been
seen during training.



342 M. Junczys-Dowmunt

Table 1. Performance for chosen generations

Training data Test data
Generation Complexity Precision Recall F-score Precision Recall F-score

0 2,672 77.29 75.83 76.55 76.90 75.52 76.20
50 4,235 78.80 76.87 77.83 78.13 76.31 77.21

100 6,834 79.46 77.40 78.42 78.70 76.78 77.73
500 14,256 81.08 78.38 79.71 80.02 77.26 78.61

1,000 10,395 81.49 79.03 80.24 79.99 77.74 78.85

(a) F-Score for training and test set (b) Size of the best-ranked rule set

Fig. 3. Progression of F-Score and Complexity

5.2 Results

Tab. 1 and Fig. 3 summarize the results for the best individual of each generation.
The 0th generation represents the seed grammar. As shown on Fig. 3a, the increase
in quality progresses slower on the test set than on the training data. However, during
the first 1,000 iterations no overfitting seems to occur. From the 400th generation on,
little improvement on the test data can be observed, but the curve follows the shape of
the curve for the training data. The performance of the evolved grammar after 1,000
generations on the unseen test set is improved by 2.7 points F-score (3.7 points on the
training set).

The changes in size of the best rule set in each generation are presented in Fig. 3b.
At first, increasing the size of the rule set seems to be a good strategy to increase parse
quality. A cut-off size of 25,000 nodes is applied and one might expect the grammars
to reach this maximum size and to stay there for a longer time ([14]). Interestingly,
apart form a single peak in the 226th generation this does not happen. Starting from this
generation, the second optimization objective, rule set complexity, plays a greater role.



A Genetic Programming Experiment in Grammar Engineering 343

Size decreases steadily and compared to the rather dynamic first phase of the process
no significant jumps in size occur.

6 Conclusions and Future Work

We demonstrated that a Genetic Programming algorithm can improve our complex,
manually created natural language grammar with the help of a treebank by around 2.7
points Parseval F-score on an unseen test set. The grammar is non-probabilistic and not
context-free. It can be assumed that the presented method could be used to any type
of grammar that can be represented as a tree structure. The process is however quite
resource-intensive.

Future research needs to focus on larger training data sets and better parameter
settings for the presented algorithm. Another important direction will include the full
extraction of a grammar from treebanks without a seed grammar. In that case a more
popular treebank shall be used to make results comparable to traditional approaches to
treebank grammars.

Acknowledgements. This paper is based on research funded by the Polish Ministry of
Science and Higher Education (Grant No. N N516 480540).

References

1. Abney, S., Flickenger, S., Gdaniec, C., Grishman, C., Harrison, P., Hindle, D., Ingria, R.,
Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos, S., Santorini, B., Strzalkowski,
T.: A Procedure for Quantitatively Comparing the Syntactic Coverage of English Grammars.
In: Proceedings of a Workshop on Speech and Natural Language, San Francisco, pp. 306–311
(1991)

2. Koza, J.R.: The Genetic Programming Paradigm. In: Dynamic, Genetic, and Chaotic
Programming, New York, pp. 203–321 (1992)

3. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008),
http://www.gp-field-guide.org.uk

4. Dunay, B.D., Petry, F.E., Buckles, W.P.: Regular Language Induction with Genetic Program-
ming. In: Proc. of the 1994 IEEE World Congress on Computational Intelligence, Orlando,
pp. 396–400. IEEE Press (1994)

5. Keller, B., Lutz, R.: Learning Stochastic Context-Free Grammars from Corpora Using a
Genetic Algorithm. University of Sussex (1997)

6. Smith, T.C., Witten, I.H.: A Genetic Algorithm for the Induction of Natural Language
Grammars. In: Proc IJCAI 1995 Workshop on New Approaches to Learning for Natural
Language Processing, pp. 17–24 (1995)

7. Korkmaz, E.E., Ucoluk, G.: Genetic Programming for Grammar Induction. In: 2001 Genetic
and Evolutionary Computation Conference, San Francisco (2001)

8. Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: Proc. of the 41st Annual
Meeting of the Association for Computational Linguistics, pp. 423–430 (2003)

9. Kübler, S., Hinrichs, E.W., Maier, W.: Is it really that difficult to parse German. In: Proc. of
the Conference on Empirical Methods in Natural Language Processing, pp. 111–119 (2006)

10. Graliński, F., Jassem, K., Junczys-Dowmunt, M.: PSI-toolkit: A Natural Language Process-
ing Pipeline. In: To appear in: Computational Linguistics — Applications. SCI. Springer

http://www.gp-field-guide.org.uk


344 M. Junczys-Dowmunt

11. Przepiórkowski, A., Buczyński, A.: ♠: Shallow parsing and disambiguation engine. In:
Proceedings of the 3rd Language & Technology Conference, Poznań (2007)

12. Junczys-Dowmunt, M.: It’s all about the Trees — Towards a Hybrid Syntax-Based MT
System. In: Proceedings of IMCSIT, pp. 219–226 (2009)

13. Abeillé, A., Clément, L., Toussenel, F.: Building a Treebank for French. In: Treebanks:
Building and Using Parsed Corpora, pp. 165–188. Springer (2003)

14. Crane, E.F., McPhee, N.F.: The Effects of Size and Depth limits on Tree Based Genetic
Programming. In: Genetic Programming Theory and Practice III, pp. 223–240. Springer
(2005)


	Introduction
	Related Work
	The Seed Grammar
	The Shallow Parser
	Manual Grammar Engineering

	Genetic Programming
	Chromosome Representation
	Genetic Operators
	Fitness Function
	Algorithm

	Evaluation
	Training and Test Data
	Results

	Conclusions and Future Work

